Mark scheme - Redox and Electrode Potentials

Question		Answer/Indicative content	Mark	Guidance
1	a	Comparison of E values E of redox system $4\left(\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}\right)$ is more positive/less negative than E of redox systems 2 $(\mathrm{HCOOH} / \mathrm{HCHO})$ OR $1\left(\mathrm{CO}_{2} / \mathrm{HCOOH}\right) \sqrt{ }$ Equilibrium shift related to E values More negative/less positive/system 2 ($\mathrm{HCOOH} / \mathrm{HCHO}$) OR system $1\left(\mathrm{CO}_{2} / \mathrm{HCOOH}\right)$ shifts left OR Less negative/more positive/system $4\left(\mathrm{MnO}_{4}\right.$ $/ \mathrm{Mn}^{2+}$) shifts right $\sqrt{ }$ - 2 and 4 $2 \mathrm{MnO}_{4-}+5 \mathrm{HCHO}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{HCOOH}+$ $3 \mathrm{H}_{2} \mathrm{O}, ~$ - 1 and 4 $2 \mathrm{MnO}_{4-}+5 \mathrm{HCOOH}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$	4 (AO 3.1× 2) (AO 3.2× 2)	IGNORE higher/lower ALLOW Overall Ereaction $=(+) 1.54 \mathrm{~V}$ OR (+)1.62V For 'shifts left', ALLOW 'is oxidised' OR 'electrons are lost ' OR 'reducing agent' For 'shifts right', ALLOW 'is reduced' OR 'electrons are gained' OR 'oxidising agent' IGNORE state symbols ALLOW multiples DO NOT ALLOW un-cancelled species, e.g. H^{+}, on both sides ALLOW for 1 mark two balanced equations with uncancelled species. ALLOW combined equation for 2 marks: $4 \mathrm{MnO}_{4-}+5 \mathrm{HCHO}+12 \mathrm{H}^{+} \rightarrow 4 \mathrm{Mn}^{2+}+5 \mathrm{CO}_{2}$ $+11 \mathrm{H}_{2} \mathrm{O}$ Examiner's Comments Higher-attaining candidates described two oxidations starting from HCHO to end up with CO_{2}. Many candidates used the data correctly but stopped at the first oxidation to form HCOOH . Lower-attaining candidates did not state that the direction of reaction of redox equilibria is dependent on the relative negativity/positivity of the standard electrode potentials. Some candidates are still using higher/lower to compare the E cell values, and should be encouraged to instead use the phrasing 'more positive' or 'more negative'. Many candidates wrote a correct first equation, although some did not cancel down the H^{+}and/or water.
	b	$\begin{aligned} & 2 \mathrm{H}^{+}+1 / 2 \mathrm{O}_{2}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O} \checkmark \\ & 1.34+(-0.11)=(+) \underline{1.23}(\mathrm{~V}) \checkmark \end{aligned}$	$\begin{gathered} 2 \\ (\mathrm{AO} \\ 2.6) \\ (\mathrm{AO} \\ 2.2 \times 1 \\ \text {) } \end{gathered}$	IGNORE state symbols ALLOW multiples
		Total	6	

		Total	4	
6		$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{O}_{2}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2}$ Correctly balanced equation for $\mathrm{MnO}_{4}^{-} / \mathrm{H}_{2} \mathrm{O}_{2}$ reaction but no cancelling of H^{+}and/or $\mathrm{e}^{-} \checkmark$ Overall equation correct with all species cancelled \checkmark	2	ALLOW multiples ALLOW \rightleftharpoons instead of \rightarrow sign ALLOW 1 mark for final equation with correct balancing numbers AND ONE small slip in a formula OR charge IGNORE annotations around equations, i.e. treat as rough working ALLOW 1 mark for: $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right.$ is acting as both reducing and oxidising agent) Examiner's Comments This part discriminated extremely well with many candidates obtaining either both marks or zero marks. Candidates needed to select the correct redox pairs, combine them and cancel H^{+}and $\mathrm{H}_{2} \mathrm{O}$. Many otherwise correct equations did not receive credit as they contained basic balancing errors. As a final step in constructing an equation, candidates are recommended to check the formulae of their species and that the equation is balanced.
		Total	2	

Analysis of results

5 marks
$n\left(\mathrm{Ce}^{4+}\right)=23.20 \times \frac{0.0500}{1000}=1.16 \times 10^{-3}(\mathrm{~mol}) \checkmark$
ii $\quad n\left(\left(\mathrm{COOH}_{2}\right)\right.$ in $25.0 \mathrm{~cm}^{3}=\frac{1.16 \times 10^{-3}}{2}=5.8(0) \times 10^{-4}(\mathrm{~mol}) \checkmark$
$n\left((\mathrm{COOH})_{2}\right)$ in $250 \mathrm{~cm}^{3}$

$$
=5.8(0) \times 10^{-4} \times 10=5.8(0) \times 10^{-3}(\mathrm{~mol}) \checkmark
$$

Mass $(\mathrm{COOH})_{2}=5.8(0) \times 10^{-3} \times 90.0=0.522 \mathrm{~g} \checkmark$
$\%$ oxalic acid $=\frac{0.522 \times 100}{82.68}=0.631 \%$

Percentage MUST be expressed to $\mathbf{3} \mathbf{S F}$

IGNORE clear for colourless

Examiner's Comments

Candidates were expected to apply their knowledge of the colour change in a manganate(VII) titration to this novel situation. Most candidates incorrectly showed the inverse colour change of yellow \rightarrow colourless.

Common error

Incorrect mean from all 3 titres $=23.30 \mathrm{~cm}^{3}$

Use ECF throughout

Intermediate values for working to at least 3 SF.
TAKE CARE as value written down may be truncated value stored in calculator. Depending on rounding, either can be credited.

COMMON ERRORS:

Mean of 23.30 (use of all 3 titres)
$\rightarrow 0.634 \%$: 5 marks

TAKE CARE for final answer of 0.63 seen.

- No final mark as only 2 SF
0.63 may have been rounded from 0.631 (from
- correct mean)

OR from 0.634 (using mean from all 3 titres)
Check back to mean titre.

No $\div 2$ to obtain $n\left((\mathrm{COOH})_{2}\right)$
$\rightarrow 1.26 \%$: $\quad 5$ marks from 23.20
$\rightarrow 1.27 \% \quad 4$ marks from 23.30

Examiner's Comments

Most candidates answered this unstructured titration calculation well, with almost all responses gaining some credit. Most coped well with the 1:2 reaction stoichiometry and the need to scale up to $250 \mathrm{~cm}^{3}$.

Common errors included the following.

- Taking the mean of all three titres (23.30 cm^{3}) instead of the closest titres (23.20 cm^{3}).
- Not considering the 1:2 stoichiometry.
- Not scaling up to $250 \mathrm{~cm}^{3}$.
- Giving the final answer to two rather than three significant figures; this was the most common error.

				The question required the final answer to be given to an appropriate number of significant figures. Many candidates seemed to be unaware that this reflects the least significant figures provided in the data, in this case three significant figures. Candidates are also advised to only round at the end of a multi-step calculation. Rounding of intermediate values introduces rounding errors in the final answer. The example shows a perfect response with each step clearly described, leading to the correct concentration of ethanedioic acid. Candidates should present their calculations clearly. If there is a mistake at any stage, this can be easily identified, allowing for error carried forward to be applied for any subsequent good method. Exemplar 6
		Total	7	
8	i	Titres correct and ALL recorded to $\mathbf{2}$ decimal places $\text { mean titre }=23.80\left(\mathrm{~cm}^{3}\right) \checkmark$	2	ALLOW 23.8 cm ${ }^{3}$ Examiner's Comments It is clear candidates are not as experienced at filling in titration tables as might be expected. Every value in a titration table should be recorded to a second decimal place to an accuracy of ± 0.05 cm^{3}. The average titre should be calculated by

			Relative formula mass of B $=\frac{1.55}{5.95 \times 10^{-3}}=260.5\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)^{2}$ Formula of B (must be derived from relative formula mass) lodate of Group 1 metal that most closely matches calculated molar mass of \mathbf{B} Formula from $260.5=\mathrm{RbIO}_{3} \checkmark$		ECF from $n\left(\mathrm{IO}_{3}{ }^{-}\right)$in original $250 \mathrm{~cm}^{3}$ IF scaling $\times 10$ is omitted, ALLOW ECF from $n\left(\mathrm{IO}_{3}^{-}\right)$in titration ALLOW ECF from incorrect RFM of \mathbf{B} provided metal is from Group 1 ALLOW $\mathrm{RbIO}_{3}-$ DO NOT ALLOW RbIO_{3} without relative formula mass value. DO NOT ALLOW 260.4 (without working) and RbIO_{3} IF $\mathrm{B}=\mathrm{RbIO}_{3}$ AND relative formula mass $=261$ award 5 marks Examiner's Comments This unstructured calculation was done well by the higher ability candidates. Lower ability candidates struggled to show what they were attempting to calculate and in particular did not appreciate the 1: 6 ratio of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$ to $\mathrm{IO}_{3}{ }^{-}(\mathrm{aq})$. Candidates might be advised to start n (formula) $=$... at the start of each line of calculation eg $n\left(\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right)=\ldots \mathrm{mol}$ No credit was given to candidates who grasped the identity of the Group 1 iodate from nowhere and calculated the theoretical relative formula mass.
			Total	10	
9	a	i	complete circuit AND voltmeter AND salt bridge linking two half-cells \checkmark Pt AND I- AND I $I_{2} \checkmark$ Standard conditions: $1 \mathrm{~mol} \mathrm{dm}^{-3}$ solutions AND $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$,	4	Voltmeter must be shown AND salt bridge must be labelled ALLOW small gaps in circuit ALLOW half cells drawn either way around IGNORE 2 before $\mathrm{I}^{-}(\mathrm{aq})$ DO NOT ALLOW $\mathrm{I}_{2}(\mathrm{~g})$ OR $\mathrm{I}_{2}(\mathrm{~s})$ OR $\mathrm{I}_{2}(\mathrm{l})$ ALL conditions required BUT ALLOW $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M}$ if omitted here but shown for just one solution in diagram Look on diagram in addition to answer lines IGNORE pressure Not relevant for this cell DO NOT ALLOW 1 mol for concentration

				Examiner's Comments A significant number of candidates did not draw a simple circuit. Most candidates scored the mark for the Ni electrode but fewer scored the mark for the Pt electrode in the $\mathrm{I}^{-}(\mathrm{aq}) / I_{2}(\mathrm{aq})$ mixture. The last mark, for the conditions (including concentrations of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$), was almost universally scored even by those who omitted the solutions in their diagram. Common errors were: diagrams with electrodes not entering solutions; salt bridges not labelled or not entering solutions; making solid iodine an electrode; and assuming iodine to be a gas and adapting a standard hydrogen electrode to accommodate this.
	ii	$E=0.79(\mathrm{~V}) \checkmark$	1	IGNORE sign Examiner's Comments This was the most successfully answered single mark question on the paper.
b		$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Fe}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{3+-}(\mathrm{aq})+ \\ & 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \downarrow \end{aligned}$	1	ALLOW multiples IGNORE state symbols, even if wrong Examiner's Comments Most candidates got the equation correct. Occasionally a number was omitted causing incorrect stoichiometry and occasionally the equation was reversed.
	ii	Equations $\begin{aligned} & 3 \mathrm{Zn}(\mathrm{~s})+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+ \\ & 14 \mathrm{H}+(\mathrm{aq}) \\ & \rightarrow 3 \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{Cr}^{3+}(\mathrm{aq})+ \\ & 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \downarrow \\ & \mathrm{Zn}(\mathrm{~s})+2 \mathrm{Cr}^{3+}(\mathrm{aq}) \rightarrow \\ & \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{Cr}^{2+}(\mathrm{aq}) \checkmark \end{aligned}$ Comparison of E values (seen once) E of Zn is more negative/less positive than E of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ OR E of Zn is more negative/less positive than E of $\mathrm{Cr}^{3+}, ~$ Equilibrium shift related to E values	4	ALLOW multiples IGNORE state symbols, even if wrong ALLOW $E_{\text {cell }}$ is (+) 2.09 V for $\mathrm{Zn} / \mathrm{Cr}_{2} \mathrm{O}^{2-}$ cell OR ALLOW $E_{\text {cell }}$ is $(+) 0.34 \mathrm{~V}$ for $\mathrm{Zn} / \mathrm{Cr}^{3+}$ cell IGNORE 'lower/higher'

There is an attempt at a logical structure with a line of reasoning The information is in the most part relevant.

0 marks No response worthy of credit.

Oxidation numbers

$$
\mathrm{Cu}(+1) \rightarrow \mathrm{Cu}(+2)+\mathrm{Cu}(0)
$$

REACTION 3 (CuO/HNO 3) Equation

$$
\mathrm{CuO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Molar ratios

$\mathrm{Cu}:$| H |
| :---: | | $\mathrm{N}: \mathrm{O}$ |
| :---: |
| $=$ |
| $\frac{26.29}{63.5}:$ |$\frac{2.49}{1.0}: \frac{11.59}{14.0}: \frac{59.63}{16.0}$

Formula of F

$\mathrm{CuH}_{6} \mathrm{~N}_{2} \mathrm{O}_{9}$
F: $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)^{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{OR} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right)$

Further guidance on use of wedges

Must contain 2 'out wedges', 2 'in wedges'

- and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge':
For bond into paper, ALLOW:

ALLOW following geometry:
-

Examiner's Comments

Many candidates had a stab at identifying C-F but neglected to include equations for the three reactions described or to show relevant working.

Most candidates recognised \mathbf{C} as the ammoniacal copper(II) ion but the formula was frequently incorrect and correct attempts at a ligand substitution equation from $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ was rarely seen. Diagrams showing the trans isomer were attempted but often of poor quality due to incorrect linking.

Candidates recognised D as being CuSO_{4} but often did not identify E as Cu due to a lack of familiarity with this common disproportionation reaction. $\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$ was a common incorrect identification of \mathbf{E}. Only the best responses described the oxidation number changes which made this a disproportionation reaction.

	F was identified by a percentage by mass calculation to determine an empirical formula and then by deduction to produce $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. Having done this, many candidates did not give the relatively simple equation for reaction 3 between copper(II) oxide and dilute nitric acid.

5.2.3 Redox and Electrode Potentials

				practice in picking out and interpreting key information.
		Total	16	
$\begin{aligned} & 1 \\ & 0 \end{aligned}$	i	sodium nitrate(III)	1	ALLOW sodium nitrite OR sodium nitrite(III) Examiner's Comment: This part was very poorly answered, the most common answer being sodium nitrate. The examiners were expecting sodium nitrate(III) but the mark scheme was extended to also allow sodium nitrite. Sodium(III) nitrate was sometimes seen, indicating that candidates are not fully conversant with rules for showing oxidation states in names.
	ii	Sodium / Na oxidised from 0 to $+1 \checkmark$ Nitrogen $/ \mathrm{N}$ reduced from +3 to $0 \checkmark$	2	ALLOW 1+ for +1 and $3+$ for +3 ALLOW N_{2} for nitrogen ALLOW 1 mark for elements AND all oxidation numbers correct, but N on oxidised line and Na on reduced line ' + ' is required in +3 and +1 oxidation numbers Examiner's Comment: This part was generally answered well although a significant number of candidates managed to get one of the oxidation numbers wrong, usually for N . It was rare to see the sign for an oxidation number omitted.
	iii	$2 \mathrm{NaNO}_{2}+6 \mathrm{Na} \rightarrow 4 \mathrm{Na}_{2} \mathrm{O}+\mathrm{N}_{2} \checkmark$ IGNORE state symbols	1	ALLOW multiples, e.g. $\mathrm{NaNO}_{2}+3 \mathrm{Na} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}+1 / 2 \mathrm{~N}_{2} \checkmark$ Examiner's Comment: The examiners were impressed with the responses for this part with just over half the candidates producing a correct balanced equation for this unfamiliar reaction. Most used whole numbers for balancing but it was common to also see the halfmultiple version including $1 / 2 \mathrm{~N}_{2}$.
		Total	4	
$\begin{aligned} & 1 \\ & 1 \end{aligned}$		ALLOW equilibrium sign in equations provided reactants on left	4	ALLOW correct multiples IGNORE state symbols ALLOW uncancelled $\mathrm{H}_{2} \mathrm{O}$ and H^{+} $\begin{aligned} & \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{MnO}_{2}+4 \mathrm{H}^{+} \rightarrow \mathrm{O}_{2}+\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \\ & +2 \mathrm{H}^{+} \end{aligned}$

		Reaction of $\mathrm{H}_{2} \mathrm{O}_{2}$ with MnO_{2} : $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{MnO}_{2}+2 \mathrm{H}^{+} \rightarrow \mathrm{O}_{2}+\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \checkmark$ Reaction of $\mathrm{H}_{2} \mathrm{O}_{2}$ with $\mathbf{M n}^{\mathbf{2 +}}$: $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Mn}^{2+} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}^{+} \checkmark$ Use of E data Use of E data to support equation(s) above or half direction of provided half equations (one including MnO_{2}) \checkmark Also look for evidence around half equations MnO_{2} regenerated / reformed \checkmark Must be linked to an equation showing MnO_{2} as reactant and an equation showing MnO_{2} as product		$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Mn}^{2+}+\mathbf{2} \mathrm{H}_{2} \mathrm{O}+\mathbf{2 \mathrm { H } ^ { + }} \rightarrow \mathrm{MnO}_{2}+\mathbf{4 \mathrm { H } ^ { + }}$ $+\mathbf{2 H} \mathbf{H}_{2}$ Examples - More negative E moves to left ORA - Reduction half equation to the right ORA - Most positive E is reduced ORA - Calculated E cell $=+0.81 \mathrm{~V}$ (from top 2) OR +0.27 V (from bottom 2) ALLOW combining of equations above to show that MnO_{2} is used and reformed Examiner's Comment: Many candidates found this part challenging and there was a wide variety of answers and marks awarded. There were two equations to construct showing how MnO_{2}, and Mn^{2+} react with $\mathrm{H}_{2} \mathrm{O}_{2}$. Many combined the two equations involving $\mathrm{H}_{2} \mathrm{O}_{2}$ to obtain the overall equation for the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ which was given at the top of the paper. Of the equations seen, many had species uncancelled. Many candidates only tackled one of the equations. Candidates were expected to provide evidence for their equations based on the electrode potentials provided. Use of this data was patchy and only the best candidates linked the relative E values to the direction of movement or redox details. A significant number gave cell potentials. Regeneration of MnO_{2} was well understood but often just stated with no reference to the equations. This part discriminated very well.
		Total	4	
2	a	AWARD 2 marks for correct balancing AND all species cancelled on both sides of equation: $\begin{aligned} & 2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{SO}_{3}{ }^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+3 \mathrm{H}_{2} \mathrm{O} \\ & +5 \mathrm{SO}_{4}{ }^{2-} \checkmark \end{aligned}$ AWARD 1 mark for correct balancing but not all species $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}\right)$cancelled on both sides of equation \checkmark $\text { e.g. } 2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{SO}_{3}{ }^{2-}+5 \mathrm{H}_{2} \mathrm{O}$	2	ALLOW correct multiples e.g. $\mathrm{MnO}_{4}^{-}+3 \mathrm{H}^{+}+2 \frac{1}{2} \mathrm{SO}_{3}{ }^{2-}$ $\rightarrow \mathrm{Mn}^{2+}+1 \frac{1}{2} \mathrm{H}_{2} \mathrm{O}+2^{1} / 2 \mathrm{SO}_{4}{ }^{2-}$ IGNORE state symbols e.g. $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+2 \frac{1}{2} \mathrm{SO}_{3}{ }^{2-}+2^{1} / 2 \mathrm{H}_{2} \mathrm{O}$

			$\rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{SO}_{4}{ }^{2-}+10 \mathrm{H}^{+}$		$\rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+2 \frac{1}{2} \mathrm{SO}_{4}^{2-}+5 \mathrm{H}^{+}$ Examiner's Comments This was successfully answered by the majority of candidates.
	b	i	Circuit: complete circuit AND voltmeter AND labelled salt bridge linking two half-cells \checkmark Half cells: Pt AND Fe^{2+} AND $\mathrm{Fe}^{3+} \downarrow$ Zn AND Zn^{2+}, Standard conditions:	4	Electrodes / salt bridge must at least touch the surface ALLOW small gaps in circuit wires ALLOW half cells drawn either way around ALLOW $1 \mathrm{~mol} / \mathrm{dm}^{3}$ OR 1 M ALLOW $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M}$ if omitted here but shown for just one solution in diagram IGNORE pressure DO NOT ALLOW 1 mol(e) for concentration Examiner's Comments A significant number of candidates handicapped themselves by failing to draw a simple circuit. Diagrams with electrodes not entering solutions, salt bridges not labelled or not entering solutions were frequently seen. Most candidates scored the mark for the Zn electrode but less scored the mark for the Pt electrode in the $\mathrm{Fe}^{2+}(\mathrm{aq}) / \mathrm{Fe}^{3+}(\mathrm{aq})$ mixture. The last mark, for the conditions (including concentrations of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$), was almost universally scored even by those who omitted the solutions in their diagram.
		ii	1.53 (V) \checkmark	1	IGNORE sign Examiner's Comments This was the most successfully answered one mark question on the paper.
	c		strongest reducing agent: strongest oxidizing agent: $\mathrm{MnO}_{4}^{-} \downarrow$	2	NOTE: H^{+}has been ignored Examiner's Comments Most candidates were able to use the standard electrode potentials given in the question to work out that zinc ($\mathrm{Zn}(\mathrm{s}))$ was the strongest reducing agent and that manganate(VII) ions were the strongest oxidising agent.
			Total	9	
			$\mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{HI} \rightarrow 4 \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}$ All species correct	2	

5.2.3 Redox and Electrode Potentials

			OR $\mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{HI} \text { ratio }=1: 8 \checkmark$ Equation complete and balanced \checkmark		
			Total	2	
$\begin{aligned} & 1 \\ & 4 \end{aligned}$	a	i	$3 \mathrm{MnO}_{4}{ }^{2-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW 1 in front of MnO_{2}
		ii	In acidic conditions (Concentration of) H^{+}increases AND equilibrium (position) shifts to the right to reduce concentration of $\mathrm{H}^{+} /$remove $\mathrm{H}^{+} \checkmark$ In alkaline conditions OH^{-}reacts with H^{+} AND equilibrium (position) shifts to the left to increase concentration of $\mathrm{H}^{+} /$add $\mathrm{H}^{+} \checkmark$	2	ALLOW $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
	b		In acid: $\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}$ AND $\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \checkmark$ $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ AND Cell potential $=1.23-0.00=1.23(\mathrm{~V}) \checkmark$ In alkali: $2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{e}^{-}$ AND $\begin{aligned} & \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}(\mathrm{aq}) \checkmark \\ & 2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ AND Cell potential $=0.40-(-0.83)=1.23(\mathrm{~V}) \checkmark$	4	$\text { ALLOW } \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$ $\text { ALLOW } \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
			Total	7	
	a		$\begin{aligned} & C u^{2+}:\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9} \checkmark \\ & C u^{+}:\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} \checkmark \end{aligned}$	2	IGNORE repeated $1 \mathrm{~s}^{2}$ after $1 \mathrm{~s}^{2}$ prompt on answer line ALLOW 4s ${ }^{0}$, either before or after 3d ALLOW upper case D, etc and subscripts, e.g....... $3 \mathrm{~S}_{2} 3 \mathrm{P}^{6}$ DO NOT ALLOW [Ar] as shorthand for $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ Examiner's Comments

	ii	$\mathrm{Au} / \mathrm{Gold}$ has been oxidised from 0 to $+1 \checkmark$ $\mathrm{O} / \mathrm{Oxygen} / \mathrm{O}_{2}$ has been reduced from 0 to $-2 \checkmark$	2	IF Ag referred to, rather than Au , treat as a slip and apply BOD ALLOW 0 to 1 (i.e. no + sign for +1) ALLOW 1 mark for ALL oxidation numbers correct with no oxidised or reduced OR oxidation and reduction wrong way round, e.g. Au goes from 0 to +1 and 0 goes from 0 to $-2 \checkmark$ Au is reduced from 0 to +1 and O is oxidised from 0 to - 2 V Examiner's Comments Although most identified correct oxidation numbers, a significant number thought that the CN^{-}ion was reduced. Overall though, candidates demonstrated a good understanding of basic redox.
	iii	IGNORE any charges shown within complexes (treat as rough working) $4 \mathrm{Au}+8 \mathrm{CN}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \rightarrow 4\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}+4 \mathrm{OH}^{-} \checkmark \checkmark$ First mark for all 6 species Second mark for balancing	2	IF Ag referred to, rather than Au , treat as a slip and apply BOD IGNORE state symbols CARE: In $\left[A u(C N)_{2}\right]^{-}$, - sign is OUTSIDE square brackets For 1st mark, IGNORE e- present ALLOW 1 mark for balanced equation with CN^{-} missing, i.e. $4 \mathrm{Au}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \rightarrow 4 \mathrm{Au}^{+}+4 \mathrm{OH}^{-}$ ALLOW 1 mark rogue e^{-}on either side ALLOW multiples, e.g. $\begin{aligned} & 2 \mathrm{Au}+4 \mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{O}_{2} \rightarrow 2\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}+2 \mathrm{OH}^{-} \\ & \mathrm{Au}+2 \mathrm{CN}^{-}+1 / 2 \mathrm{H}_{2} \mathrm{O}+1 / 4 \mathrm{O}_{2} \rightarrow\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}+\mathrm{OH}^{-} \end{aligned}$ Examiner's Comments Almost all candidates wrote the correct species but balancing the equation was much more demanding. It was often balanced by species but not by charge and oxidation number.
	v	$\mathrm{ClO}^{-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	IGNORE state symbols ALLOW e for electron ALLOW multiples Examiner's Comments Candidates found it easy to derive the correct half equation.
		Total	6	

(

					positive value). It was also common to see cell voltages used, such as +0.98 V for a reaction between iron and iodine. Both approaches were credited. The most able candidates correctly predicted that Fe^{2+} ions, initially formed from the reaction of iron with bromine and chlorine, would then be oxidised to Fe^{3+}. The best answers showed exceptional understanding. Candidates are advised to consider all the information supplied in a question as the majority had ignored completely the $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ data
			Total	5	
22	a	i	$\mathrm{pH}=0 \checkmark$	1	Guidance Examiner's Comments Surprisingly, this part caused many candidates a problem with less than half the candidates obtaining the correct answer of 0 V . The commonest incorrect responses seen were pH values of 1 or even 7 . Answer: $\mathrm{pH}=0 \mathrm{~V}$
		ii	H redox system is more negative (e.g. has a more -ve E OR less +ve E OR is -ve electrode) OR H redox system releases electrons (May be in equation, e.g. $\mathrm{H}_{2} \rightarrow 2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$) \checkmark Equilibrium shifts to increase $\left[\mathrm{H}^{+}\right] \mathrm{OR} \mathrm{H}^{+}$ OR standard hydrogen equation shifts to increase $\left[\mathrm{H}^{+}\right] \mathrm{OR} \mathrm{H}^{+} \checkmark$	2	ALLOW ORA, ie Ag redox system (D) has more positive E / less negative E ALLOW equilibrium sign IGNORE H is more reactive ORA IGNORE direction of equilibrium shift Examiner's Comments This part discriminated well with many candidates unable to interpret the information. Although the question asked for an explanation in terms of electrode potentials and equilibrium, these were often absent in the responses. Surprisingly, many identified the incorrect polarity for the hydrogen half-cell and then concluded that a decease in pH is a result of a decrease, rather than an increase in $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$. To score well required a very good understanding of equilibrium in the context of electrode potentials.
		iii	$\mathrm{H}_{2}+2 \mathrm{Ag}^{+} \rightarrow 2 \mathrm{Ag}+2 \mathrm{H}^{+} \checkmark$	1	ALLOW multiples e.g. $1 / 2 \mathrm{H}_{2}+\mathrm{Ag}^{+} \rightarrow \mathrm{Ag}+\mathrm{H}^{+}$ State symbols NOT required ALLOW equilibrium sign

				Examiner's Comments This part required candidates to construct an equation for an unfamiliar reaction. Candidates were reasonably competent in identifying the gas as O_{2} and precipitate as $\mathrm{Fe}(\mathrm{OH})_{3}$. Unfortunately, some responded with 'oxygen' despite the formulae being asked for in the question. The correct equation proved to be the hardest mark on the paper, being seen extremely rarely. As with the equation in 8(a), often the overall charge didn't balance on either side of the equation, a consideration that would have led to many more correct responses.
		Total	12	
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	a	Definition The e.m.f. (of a half-cell) compared with / connected to a (standard) hydrogen half-cell / (standard) hydrogen electrode \checkmark Standard conditions Units essential Temperature of $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ AND (solution) concentrations of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ AND pressure of 100 kPa OR $10^{5} \mathrm{~Pa}$ OR $1 \mathrm{bar} \checkmark$	2	As alternative for e.m.f., ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential ALLOW / (standard) hydrogen cell IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1M DO NOT ALLOW 1 mol ALLOW 1 atmosphere / 1 atm OR 101 kPa OR 101325 Pa Examiner's Comments This definition was well known with most candidates achieving both marks. An error was more likely for the units of the standard conditions, usually 1 mol and $1 \mathrm{~mol} \mathrm{dm}^{3}$ for concentration. A less common error was comparison with a hydrogen fuel cell.
	b i	i $2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \checkmark$	1	State symbols not required ALLOW \rightleftharpoons provided that reactants on LHS Examiner's Comments This proved to be a relatively easy mark although some showed the equation the wrong way round or did not balance the silver species on one side of the equation.
		Assume $\mathrm{Cu}^{2+} \mid \mathrm{Cu}$ OR Cu half cell unless otherwise stated. [Cu^{2+}] decreases $\mathbf{O R}<1 \mathrm{~mol} \mathrm{dm}^{-3}$ AND	3	FULL ANNOTATIONS MUST BE USED ALLOW $\left[\mathrm{Cu}^{2+}\right]$ less than standard concentration / 1 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ DO NOT ALLOW water reacts with $\mathrm{Cu}^{2+} \mathrm{OR} \mathrm{Cu}$

| | | |
| :--- | :--- | :--- | :--- | :--- |

5.2.3 Redox and Electrode Potentials

		$\begin{array}{llll}\text { Titre: } 22.50 & 21.80 & 22.15 & 21.70\end{array}$ AND mean titre $=21.75\left(\mathrm{~cm}^{3}\right) \checkmark$		Working not required for mean titre
	ii	$\text { Percentage uncertainty }=\frac{0.05 \times 2}{21.70} \times 100=0.46(\%)$ 2 DP required	1	ALLOW ECF from incorrect subtraction in (i)
	iii	(Excess KI) ensures that all I_{2} is formed for titration \checkmark	1	ALLOW All Cu ${ }^{2+}$ converted to $\mathrm{Cul/Cu}(\mathrm{I})$
		Add starch \checkmark Blue to colourless AND all I_{2} has reacted \checkmark	2	
	v	$\begin{aligned} & n\left(\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right) \text { in titration }=\frac{0.120 \times 21.75}{1000}=2.61 \times 10^{-3}(\mathrm{~mol}) \checkmark \\ & n\left(\mathrm{I}_{2}\right)=1.305 \times 10^{-3}(\mathrm{~mol}) \mathrm{OR} n\left(\mathrm{Cu}^{2+}\right)=2.61 \times 10^{-3} \\ & (\mathrm{~mol}) \end{aligned}$ AND $n\left(\mathrm{Cu}^{2+}\right) \text { in original } 250 \mathrm{~cm}^{3}=10 \times 2.61 \times 10^{-3}=2.61 \times$ $10^{-2}(\mathrm{~mol})$ Mass of $\mathbf{A}\left(\mathrm{CuSO}_{4} \cdot \mathrm{XH}_{2} \mathrm{O}\right)$ used $=17.95-12.35=5.60$ $\begin{aligned} & (\mathrm{g}) \\ & M\left(\mathrm{CuSO}_{4} \cdot \times \mathrm{H}_{2} \mathrm{O}\right)=\frac{5.60}{2.61 \times 10^{-2}}=214.6\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \\ & x=\frac{214.6-159.6}{18.0}=3.05=3 \end{aligned}$ Formula $=\mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	4	ALLOW ECF from incorrect mean titre in (i) ECF from $n\left(\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right)$ ECF from $n\left(\mathrm{Cu}^{2+}\right)$ BUT DO NOT ALLOW incorrect mass ECF from $M\left(\mathrm{CuSO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}\right)$ AND $x=$ nearest whole number
b		green solution: $\mathrm{Fe}^{2+}(\mathrm{aq}) \mathrm{OR}\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ AND gas bubbles: $\mathrm{H}_{2}(\mathrm{~g})$ AND orange-brown solution: $\mathrm{Fe}^{3+}(\mathrm{aq}) \mathrm{OR}\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \downarrow$ $\begin{aligned} & \mathrm{Fe}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \checkmark \\ & 4 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 4 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \checkmark \end{aligned}$	3	State symbols are not required in this part IGNORE, even if incorrect ALLOW full equation: $\mathrm{Fe}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{FeCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
	ii	orange solution: $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ AND green solution (anywhere) $\mathrm{Cr}^{3+} \mathrm{OR}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \checkmark$	3	State symbols are not required in this part IGNORE, even if incorrect IGNORE Cr(VI) The question asks for species

		$2 \mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+3 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+$ $8 \mathrm{H}^{+}(\mathrm{aq}) \mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{O}$ and e^{-}all cancelled $\checkmark \checkmark$		ALLOW 1 mark for $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O} / \mathrm{e}^{-}$not cancelled, e.g. $\begin{aligned} & 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+3 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \\ & \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \checkmark \end{aligned}$
		Total	15	
$\begin{aligned} & 2 \\ & 6 \end{aligned}$	a	$\begin{aligned} & n\left(\mathrm{NH}_{2} \mathrm{OH}\right)=4.32 \times 10^{-2} \times 0.0250=1.08 \times 10^{-3} \mathrm{~mol} \\ & n\left(\mathrm{Fe}^{3+}\right)=3 \times 1.08 \times 10^{-3}=3.24 \times 10^{-3} \mathrm{~mol} \end{aligned}$ (assuming Equation 3) $\text { volume }=\frac{3.24 \times 10^{-2} \times 1000}{0.0400}=81.0 \mathrm{~cm}^{3}$ Explanation: minimum amount of Fe^{3+} required is maximum amount theoretically required to react with all $\mathrm{NH}_{2} \mathrm{OH}$, i.e. if Equation 3 is correct (greatest amount of Fe^{3+} required) (owtte)	4	Factor 3 must be included in second mark for ECF on third mark. ALLOW 2 sig figs
	b	$\begin{aligned} & n\left(\mathrm{MnO}_{4}^{-}\right)=2.00 \times 10^{-2} \times \frac{21.6}{1000}=4.32 \times 10^{-4}(\mathrm{~mol}) \\ & n\left(\mathrm{Fe}^{2+}\right)=4.32 \times 10^{-4} \times 5=2.16 \times 10^{-3}(\mathrm{~mol}) \end{aligned}$ Ratio $\mathrm{NH}_{2} \mathrm{OH}: \mathrm{Fe}^{2+}$ OR $\mathrm{NH}_{2} \mathrm{OH}: \mathrm{Fe}^{2+}$ $=1.08 \times 10^{-3}: 2.16 \times 10^{-3}=1: 2$ AND Equation 2 is correct	3	Working must be to at least 3 sig figs throughout until final numerical answer BUT ignore trailing zeroes, e.g. for 0.490 allow 0.49 ECF answer above $\times 5$ This mark is only possible from correct answers above, i.e. no ECF
	c	Boiling speeds up the reaction OR Ensures that reaction is complete (Titre is less because) there is less Fe^{2+}	2	
		In Stage 1, increase quantities so that there is sufficient solution for more than one titration	1	ALLOW increase scale of Stage 1
		Total	10	
$\begin{aligned} & 2 \\ & 7 \end{aligned}$		$\begin{aligned} & . . \mathrm{ClO}^{-}+. . \mathrm{H}_{2} \mathrm{O}+\mathbf{2 . . \mathrm { e } ^ { - } \rightarrow . . \mathrm { Cl } ^ { - } + 2 . . \mathrm { OH } ^ { - }} \\ & \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathbf{1 0 . . \mathrm { OH } ^ { - } \rightarrow \mathbf { 2 } . . \mathrm { FeO } _ { 4 } ^ { 2 - } + \mathbf { 5 } . . \mathrm { H } _ { 2 } \mathrm { O } + \mathbf { 6 } . . \mathrm { e } ^ { - }} \\ & \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathbf{3} . . \mathrm{ClO}^{-}+4 . . \mathrm{OH}^{-} \rightarrow \mathbf{2} . . \mathrm{FeO}_{4}^{2-}+\mathbf{3} . . \mathrm{C} l^{-}+ \\ & 2 . . \mathrm{H}_{2} \mathrm{O} \end{aligned}$	3	ALLOW multiples throughout
		Total	3	
$\begin{aligned} & 2 \\ & 8 \end{aligned}$		Element oxidised: sulfur / S 0 to +6 Element reduced: nitrogen / $N+5$ to +4	4	ALLOW 5+, 4+ and 6+ Signs required

